Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9104, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643249

ABSTRACT

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common among children. AML is characterized by aberrant proliferation of myeloid blasts in the bone marrow and impaired normal hematopoiesis. Despite the introduction of new drugs and allogeneic bone marrow transplantation, patients have poor overall survival rate with relapse as the major challenge, driving the demand for new therapeutic strategies. AML patients with high expression of the very long/long chain fatty acid transporter CD36 have poorer survival and very long chain fatty acid metabolism is critical for AML cell survival. Here we show that fatty acids are transferred from human primary adipocytes to AML cells upon co-culturing. A drug-like small molecule (SMS121) was identified by receptor-based virtual screening and experimentally demonstrated to target the lipid uptake protein CD36. SMS121 reduced the uptake of fatty acid into AML cells that could be reversed by addition of free fatty acids and caused decreased cell viability. The data presented here serves as a framework for the development of CD36 inhibitors to be used as future therapeutics against AML.


Subject(s)
Fatty Acids , Leukemia, Myeloid, Acute , Adult , Child , Humans , Fatty Acids/therapeutic use , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/metabolism , Acute Disease , Coculture Techniques
2.
Proc Natl Acad Sci U S A ; 121(7): e2319682121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319972

ABSTRACT

Cancer invasion and metastasis are known to be potentiated by the expression of aquaporins (AQPs). Likewise, the expression levels of AQPs have been shown to be prognostic for survival in patients and have a role in tumor growth, edema, angiogenesis, and tumor cell migration. Thus, AQPs are key players in cancer biology and potential targets for drug development. Here, we present the single-particle cryo-EM structure of human AQP7 at 3.2-Å resolution in complex with the specific inhibitor compound Z433927330. The structure in combination with MD simulations shows that the inhibitor binds to the endofacial side of AQP7. In addition, cancer cells treated with Z433927330 show reduced proliferation. The data presented here serve as a framework for the development of AQP inhibitors.


Subject(s)
Aquaporins , Neoplasms , Humans , Aquaporins/metabolism , Aquaporin 1/metabolism
3.
FEBS Open Bio ; 13(11): 2094-2107, 2023 11.
Article in English | MEDLINE | ID: mdl-37731227

ABSTRACT

Glucose transporters (GLUTs) are responsible for transporting hexose molecules across cellular membranes. In adipocytes, insulin stimulates glucose uptake by redistributing GLUT4 to the plasma membrane. In unstimulated adipose-like mouse cell lines, GLUT4 is known to be retained intracellularly by binding to TUG protein, while upon insulin stimulation, GLUT4 dissociates from TUG. Here, we report that the TUG homolog in human, ASPL, exerts similar properties, i.e., forms a complex with GLUT4. We describe the structural details of complex formation by combining biochemical assays with cross-linking mass spectrometry and computational modeling. Combined, the data suggest that the intracellular domain of GLUT4 binds to the helical lariat of ASPL and contributes to the regulation of GLUT4 trafficking by cooperative binding.


Subject(s)
Carrier Proteins , Glucose , Humans , Mice , Animals , Carrier Proteins/metabolism , Protein Transport , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Insulin/metabolism
4.
FEBS Lett ; 596(7): 910-923, 2022 04.
Article in English | MEDLINE | ID: mdl-35060124

ABSTRACT

Superantigens (SAgs) are bacterial enterotoxins produced by Staphylococcus aureus. Staphylococcal enterotoxin type A (SEA), a staphylococcal superantigen, has been shown to bind to the cytokine signalling receptor glycoprotein 130 (gp130). The structural details, as well as the exact physiological role of this interaction, remain unclear. Here, we describe the structural details of the SEA-gp130 complex by combining crosslinking mass spectrometry and computational modelling. Interestingly, SEA is not able to bind gp130-homologues from rat and mouse. Our data suggest that SEA may interact with human gp130 in a different manner than other known gp130-ligands. Moreover, the fact that SEA does not bind mouse or rat gp130 suggests that SAgs have additional mechanisms of action in humans.


Subject(s)
Enterotoxins , Receptors, Cytokine , Animals , Cytokine Receptor gp130 , Enterotoxins/metabolism , Glycoproteins , Humans , Mice , Rats , Superantigens
SELECTION OF CITATIONS
SEARCH DETAIL
...